Tag: Micro Coaxial Cable

Assembly performance of ultra-fine coaxial cable

The ultra-fine coaxial cable assembly offers stable mechanical structure and supports high-speed signal transmission. With the high flexibility and shielding properties of the ultra-fine coaxial cable assembly, it is highly suitable for electronic products requiring high-capacity data transmission.

Structure of coaxial cable:

Coaxial cable is a multi-layered structure, consisting of a center conductor, insulation layer, outer conductor, and outer covering, known as the ‘coaxial cable’.

Ultra-fine coaxial cable

In coaxial cables, the cables used for high-performance small devices such as laptops, foldable smartphones, and medical equipment are extremely small. Generally, coaxial cables with an outer diameter ≤1mm are referred to as “ultra-fine coaxial cables”

High Flexibility

Ultra-fine coaxial cables are commonly used due to their higher flexibility compared to shielded FPC/FFC. They can maintain stable electrical characteristics even when bent

Excellent Impedance Control

When a high-speed signal is transmitted through a cable, the electrical signal can reflect at impedance discontinuities. Therefore, it is necessary to maintain a constant impedance as much as possible to suppress interference and ensure signal quality. By adjusting the distance between the center conductor and the outer conductor or the insulating material, the impedance of the ultra-fine coaxial cable can be appropriately controlled

Outstanding Shielding Capability

The outer conductor of the ultra-fine coaxial cable serves as electromagnetic shielding, providing excellent resistance to electromagnetic interference (EMI) by preventing the leakage of electromagnetic noise from the signal transmitted through the center conductor. Additionally, it exhibits good immunity to electromagnetic susceptibility (EMS) by effectively protecting against external electromagnetic noise

Ultra-fine Coaxial Cable Assembly Process

By terminating the ultra-fine coaxial cable with connectors, it is possible to create small and flexible assemblies of ultra-fine coaxial cables with excellent electrical characteristics

High-Performance Electromagnetic Compatibility Shielding

By using I-PEX’s EMC shielded connectors (ZenShield®), ultra-fine coaxial cable assemblies can provide significant electromagnetic interference mitigation. Therefore, ultra-fine coaxial cable assemblies with ZenShield® connector series are commonly used in high-performance electronic devices equipped with wireless communication capabilities, which require addressing EMC issues within the system.

Product Assembly Process with High Flexibility Advantage

The flexible cable characteristics of the ultra-fine coaxial cable assembly allow it to be used in various application scenarios, such as situations where the cable needs to pass through rotating components or in narrow and complex structures that make wiring challenging during assembly

Suitable Application Examples

The benefits and advantages of ultra-fine coaxial cable assemblies lie in their capabilities for mechanical and signal transmission. These components can handle high data rates while providing a high degree of flexibility and shielding performance.

Below are application examples that demonstrate the flexibility of ultra-fine coaxial cable assemblies

Product Sales Overview on the JunctionX Platform:

JunctionX specializes in the professional production, distribution, and sales of connectors/authentic substitute connectors, wire harnesses, cable products, and customized injection-molded parts, stamping parts. If you want to purchase or learn more about product solutions, please feel free to contact us through the following methods.

Applicable to the cable -like connector for ultrasonic probe components

Medical electronic equipment has more and more demand for cable connectors. The connector and cables also need to have the performance of humidity, impact resistance, insert resistance, self -cleaning, prevent EMI, etc., so as to provide reliable connection performance and high signal integrity. Users hope that medical equipment can continue to provide reliable performance day after day, so these connectors and cables must be able to use them in a harsh working environment without damage or loss. At the same time, the insertion life of the connector can exceed thousands of times. In addition, the long -term approval cycle and long product life of the regulatory authorities also require parts suppliers to ensure that their products maintain a certain period of life cycle. Therefore, when choosing a cable connector for medical equipment design, it has a long history, has a successful application experience in the medical electronics equipment industry, and can provide a wide range of solutions to meet the frequent plug -in and humid connections of the equipment and the humid -resistant connection. The supplier and the production line are priceless. I-PEX has several connectors for medical application design.

The most commonly used medical equipment for connectors and cables is an ultrasonic device. Ultrasonic probe line components usually use extremely fine coaxial axes from 42AWG to 36AWG, so as to reduce the weight and volume of the device itself and extremely fine coales can also make the ultrasonic probe soft. The extremely fine coaxial axis that matches the characteristic impedance to transmit the signal on the transmitter/sensor of the ultrasonic probe, so the signal line needs to be shielded to avoid EMI and string disturbances, and ensure that clear images are generated. A single ultrasonic probe component will already use up to 192 or more independent coaxial axes, so how to deal with so many wires is also an important design topic.

The solution includes the direct welding of the line to the switch card, the plate -to -board connection, or directly welded in other types to get the connector. Switching cartoon is usually designed as a small PCB board, which can be used directly for cable connection, but the back is also designed with a board -to -board connector to switch cards to connect between cables and connectors. There are some connectors that can be connected directly with the cable so that they can save the card. For example, the coaxial connector is such a product that can provide a modular structure. It can support direct welding, but also allows probes to be equipped with separate assembly and then installation. It can facilitate the rework and maintenance of the product, effectively avoid product maintenance cycle, and improve the overall cost advantage.

The internal connector can use multiple small PIN number connectors. However, multi -channel ultrasonic probe components require a large PIN number interface connection. In the field of medical applications, medical staff needs to be replaced from one probe to another probe according to the type of ultrasound inspection. Therefore, the interface connector of the large PIN number needs to be specially designed to reduce the insertion power to ensure the convenience of using fashion assembly.

The Cabline®-CA II series pole details of the same axis panel connector is 0.4mm spacing, a combination height of 1mm (± 0.1 mm), a 360 ° full shield metal cover with locks, multiple connection locations, and excellent 20Gbps 20Gbps /Lane’s signal integrity during high -speed transmission provides a perfect solution for equipment that requires high -speed transmission, including ultrasonic probes.

The ultrasonic sensor is generally made of a voltage chip installed on a flexible circuit. The signal is transmitted from a flexible circuit board to the extremely fine coaxial axis and transmitted to it. The application of small and fine coaxial connectors simplifies the structure of flexible components. It can also split pole fine -induced components, and assemble the two components in the final assembly. On the side of the cable, the same method can also be used in the same method. The welded connector, one PCB board, and another interface connector. As a result, the cable can be directly connected to the PCB of the chimeric connector. After that, this component can be covered and installed on the hardware with a lock device to strengthen safety.

The MINIDOCK® series connector can be applied to the reinforced docking equipment and the device that requires lower insertion power, such as the interface connector used by ultrasonic probe components. These connectors need to have a very strong body structure, integrated guidance mechanism, optional moisture -proof function, and support for more than 20,000 times. 

Although there are many connectors for the choice of ultrasonic equipment R & D engineers, the requirements for performance cannot be compromised. The intensity of the connector, easy to use, product reliability, excellent signal integrity, and high frequency plug -in durability are very critical. Subsequently, you need to optimize the selection to balance product application requirements and the realization of the product.

Why can I-PEX’s ultra-fine coaxial connectors be widely used?

1.Characteristics of I-PEX ultra-fine coaxial connectors

I-PEX Connectors is a pioneer in the ultra-fine coaxial connector industry, offering a wide range of coaxial connector products for various applications. I-PEX ultra-fine coaxial connectors are among the top choices in the PC tablet connector industry, with a leading market share.

(CABLINE®-VS Receptacle: VESA standard connector)

2.The characteristics of I-PEX shielded connectors.

With the development of high-performance, power-saving, and miniaturized electronic equipment, the demand for high-speed signals is increasing, the number of electronic components operating at low voltage is increasing, and the density of installed electronic components is also increasing. If electromagnetic noise is added from the outside, it may cause unnecessary current in the internal circuit of the device, causing failure or damage of high-performance electronic components, and may also cause damage to electronic devices. .In addition, in electronic devices with wireless communication functions (such as laptops, tablets, and mobile phones), electromagnetic waves generated inside the devices increase the noise of the wireless communication circuit, thereby degrading the antenna reception performance.
.In this case, in general, the measure against electromagnetic noise inside the equipment is to physically shield the electromagnetic noise by incorporating an electromagnetic noise filter element into the circuit and/or adding a metal shield to the element.

With the introduction of small devices mounting high-density components, and the emergence of high-speed signals in these devices, it is necessary to take measures against electromagnetic noise at device jumpers. I-PEX has developed a series of connectors that solve the problem of electromagnetic noise in the connector, with suitable grounding structure and covering layer, including the mounting position of the signal terminal tail with metal shielding ( ZenShield®) . This solution is widely adopted by many customers to prevent electromagnetic interference, especially on high-performance devices equipped with wireless communication functions such as Wi-Fi®, GPS, LTE, etc.

Enterprise -level low -speed cable component

While the data transmission rate is increased, the cable components required by the server are also increasing. Because the printed circuit board has not kept the transmission rate, high -speed cables play a main role. However, the importance of low -speed cable components has not changed. Low -speed components are still often used for power distribution, low -speed signal transmission and auxiliary lines. Low -speed components are rarely defined by industry standards, while high -speed signals are defined by the Standard Committee very frequently. As the density of the server rises, power consumption and heat are also increasing. Therefore, regardless of whether there are standards, all cable components need to be minimized, so that the server system is easy to install and prevent the flow of air flow between the components of the server so as to facilitate heat dissipation.

The advantage of low -speed cables and close -range high -speed cables is that small wire diameters can be used (except, except for power supply). High -density connectors and flexible circuit boards need to use small diameter cables. The smaller the use of the conductor, the more helpful the interconnection density, saving the space required for wiring and cable component connection.

Cable components with small bending radius and easy to wiring

It is essential for high -speed and low -speed internal cables. If the cable can be wiring along the edges or between memory and case, space can be effectively used. Less bending radius can not only reduce the space occupied by the cable, but also effectively use the edge corner of the case.

If the flexibility is insufficient, the component may require a large bending radius to occupy more space. Sometimes the cables need to be wiring along two directions. For example, up and left, the flat cables need to be curved several times, so it is difficult to achieve the steering of the two directions, and the wire beam can easily turn through through the twisting. True connectors are compatible with flexible flexible circuit boards, discrete wires and high -speed impedance control cables. USB or Ethernet is sometimes used as the access interface. They can be wired with low -speed cables.

Cabline® series connector can use various wires

On the front panel of the server with a low -speed cable component, there will be indicator lights, small display screens, and input/output interfaces such as USB and other input/output interfaces. The cable components used in the low -resolution front panel display contain multiple electronic wires, and there may be several pairs of high -speed cables. The LCD display of the small front panel can be set at any position in front of the case, and sometimes it is also set in the hanging ear. These positions are close to the pillar of the cabinet. Because the server is installed here, there will be many sheet metals here. The space that the cable can occupy is limited, and the narrow distance cable component helps to use limited space.

Low -back, miniaturized application

Extreme coaxial components and electronic wire components can be used for extremely low height design. Whether it is a high -speed or low speed, these components have low cup options to save precious space inside the server. It is often used to focus on saving space and lightweight drones, VR devices, and laptops. I-PEX extremely fine coaxial connector and electronic wire connector

I-PEX offers a variety of narrow-spacing output/input connectors. The I-PEX Cabline® series provides a variety of central lines and chimeric directions. The end -connecting electronic wires, shielding wires, impedance control extremely fine coaxials and dual -core coaxials, and even flexible circuit boards (FPCs). If high -speed is required, high -speed and impedance control cables should be selected. Low -speed cable components can use low -cost cables. Although the Cabline connector can be used for high -speed signal transmission, the link performance of the terminal depends on the cable.

Taking the Cabline®-VS polarity coaxial connector as an example, the spacing is 0.5mm, and 10 to 50 PIN feet can be selected. Due to the right -angle mother seat and straight public seat installed with circuit boards, the interface is parallel to the circuit board after installation. The connected options include electronic wires, shielding cables, extremely fine coales, and dual -core coaxials. More compatible with the FPC version. All wiring options of Cabline®-VSF shared a circuit board to install the mother seat. The FPC is an independent option, and the component only uses FPC. Different wires can be mixed with the same component. Electronic cable components contain some high -speed cables very common. If you need to use high -speed cables, the extremely fine coaxial axis can be used for transmission of differential signals. It also provides a shielding option to provide a 360 -degree shield for the connector to help suppress EMI.

Cabline®-CA IIF is suitable for FPC components, and can be compatible with the standard Cabline® CA-II mother seat

I-PEX has the production experience of the narrow-spacing cable components and connectors for decades. According to the system design needs of customers, provide customers with tailor -made solutions

Product Sales Overview on the JunctionX Platform:

JunctionX specializes in the professional production, distribution, and sales of connectors/authentic substitute connectors, wire harnesses, cable products, and customized injection-molded parts, stamping parts. If you want to purchase or learn more about product solutions, please feel free to contact us through the following methods.

Transmission comparison between ultra-fine coaxial bundle jumper connection and low transmission loss board connection

Are you looking for a solution to extend the required transmission distance while suppressing losses? Our ultra-fine coaxial bundle jumper connection can transmit approximately two to three times the distance compared to using a low transmission loss board at any speed.

1. Refer to the specifications for internal loss values; Budget for losses

With the increasing use of high-capacity storage devices, it is easier to appreciate high-resolution images and videos on consumer products such as personal computers, tablets, and smartphones. Therefore, the amount of information that needs to be processed on these devices has sharply increased, and the signal speed in the devices is becoming faster and faster.

However, the higher the speed of signal transmission, the greater the transmission losses such as conductor loss and dielectric loss that occur in the transmission path, making signal transmission more difficult. Therefore, according to transmission standards, there is a reference specification for internal loss values called loss budgeting.

For example, in the USB4 (* 1) specification Ver In the case of 1.0 [Thunderbolt 4 (* 2)], this is a 20Gbps (10GHz)/Lane high-speed transmission, and the loss budget for device A, cable, and device B is specified as -7.5 dB, as shown in the following figure.

2. Typical internal connection mode of USB4 (20Gbps (10GHz)/Lane)

If high-speed signals can be transmitted over long distances on PCB boards within a loss budget range of -7.5 dB, designers will have greater flexibility in designing their PCB boards. (1) When high-speed signals such as USB4 reach a certain transmission distance, low transmission loss boards can be used for transmission. However, the longer the transmission distance, the greater the loss in the transmission path, making it more difficult to transmit signals within the loss budget. Therefore, if the transmission path is long, measures need to be taken to suppress the losses generated in the transmission path.

Although the transmission distance can be extended by using ultra-low transmission loss boards, this may lead to a significant increase in the cost of mass production of products. Other measures to extend the required transmission distance while suppressing losses may be: (2) using jumper transmission paths suitable for high-speed transmission, or (3) using Retimer ICs to correct the attenuated signal waveform and reproduce the original waveform.

In this section, we conducted transmission loss comparison tests on (1) low transmission loss boards and (2) extremely fine coaxial line jumpers

3. Transmission comparison test results of the connection between ultra-fine coaxial bundle jumper and low transmission loss board

3.1 Comparison of transmission losses

CABLINE ®- VS II Very Fine Coaxial Bundle Jumper<Low Transmission Loss Board

3.2 Transmission Distance (USB4 (Thunderbolt 4) Specification (20Gbps (10GHz)/Lane)

CABLINE ®- VS II ultra-fine coaxial bundled jumper>low transmission loss board

3.2.1 Transmission using extremely fine coaxial bundle jumpers: 2 inches, 4 inches, 8 inches, 10 inches

3.2.2 Low loss board transmission: 2 inches, 4 inches

Based on the above measured results, calculate the maximum transmission length for each transmission path with a loss of -7.5 dB (for reference)

At any transmission speed, CABLINE ®- The transmission distance of the VS II ultra-fine coaxial bundle jumper is approximately 2 to 3 times that of using a low transmission loss board.


4. Test conditions

4.1 Dielectric constant: 3.7

(Generally, the dielectric constant of FR-4 board is about 4.7~5.0)

4.2 Specification of very fine coaxial bundle:

Transmission method: differential transmission

Test equipment: Network analyzer Keysight technologies E5071C

Measurement frequency: 20MHz~20GHz

Tested position: 1,2,3,4 (G, S, S, G)

Sample image

Produce low transmission loss boards and CABLINE of different lengths (2, 4, 8, and 10 inches) ®- VS II extremely fine coaxial bundle jumper and compare insertion losses.

Sample photos

Product Sales Overview on the JunctionX Platform:

JunctionX specializes in the professional production, distribution, and sales of connectors/authentic substitute connectors, wire harnesses, cable products, and customized injection-molded parts, stamping parts. If you want to purchase or learn more about product solutions, please feel free to contact us through the following methods.